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Abstract

The mathematical consequences of a few simple scaling assumptions about the effects of compress-

ibility are explored using a simple singular perturbation idea and the methods of statistical fluid

mechanics. Representations for the pressure-dilatation and dilatational dissipation covariances

appearing in single-point moment closures for compressible turbulent are obtained. The results

obtained, in as much as they come from the same underlying diagnostic relationship, represent

a unified development for both the compressible covariances. While the results are expressed in

the context of a second-order statistical closure they provide some interesting and very clear phys-

ical metaphors for the effects of compressibility that have not been seen using more traditional

linear stability methods. In the limit of homogeneous turbulence with quasi-normal large scales

the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The

expressions obtained are functions of the rate of change of the turbulence energy, its correlation

length scale, and the relative time scale of the cascade rate. With the appearance of the length

scale the dilatational covariances are found to scale with the Mach numbers based on the mean

strain and rotation rates. The expressions for the dilatational covariances contain constants which

have a precise and definite physical significance; they are related to various integrals of the longi-

tudinal velocity correlation. The pressure-dilatation covariance is found to be a non-equilibrium

phenomena related to the time rate of change of the internal energy and the kinetic energy of the

turbulence. Also of interest is the fact that the representation for the dilatational dissipation in a

turbulence, with or without shear, features a dependence on the Reynolds number. This article is

a documentation of an analytical investigation of the implications of a pseudo-sound theory for the

effects of compressibility. The novelty of the analysis is in the very few phenomenological assump-

tions required to produce the results. Subsequent work will assess the consequences of this analysis

in the context of compressible turbulence models for engineering calculations.
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1 Introduction

In the moment equations for compressible turbulence several new quantities, not seen in the in-

compressible form of the equations, appear. There are new terms in the equations that reflect

the fact that the fluctuating dilatation, d = uk,k, in a compressible turbulence is not zero. These

effects have been divided into two categories, Lele(1994). There are contributions to the fluctuating

dilatation by the the fluctuating pressure; there are also contributions to the fluctuating dilatation

by fluctuations in composition or temperature which occur in situation in which of heat and mass

transfer are relevant. These two sources of the fluctuating dilatation have been distinguished using

the phrases compressibility effects and variable inertia effects, Lele (1994). There are also additional

effects, in inhomogeneous or nonequilibrium flows, associated with the portion of density fluctua-

tions due to gradients in the mean density; these effects might also be called variable inertia effects

giving rise to the differences between Favre and Reynolds averaged variables. There are also effects

associated with the transport coefficient variations due to the fluctuations in temperature. In this

article effects due the occurrence of a nonzero fluctuating dilatation, the so-called compressibility

effects, are treated.

In the context of single-point moment closure methods, compressibility effects due to the fluctuating

divergence appear in two new terms in the kinetic energy equation of a turbulent field: the pressure-

dilatation, < pd >, and the variance of the dilatation, <dd >, which is related to what has come to

be called the compressible dissipation, ec = _v < dd >. The turbulent energy equation is written

as

D

< p > -ffi k = Pk - < p > es + < pd > - < p > ec + Tk. (1)

Pk represents the production and Tk represents the transport terms and any other terms (that

are not directly germane to the present analysis). There are additional terms representing the

contraction of the mass flux vector on the mean flow acceleration. Tk will also be used to represent

all such terms. The < pd > and < dd > appearing in the k equation were recognized by Zeman

(1990, 1991) and Sarkar et al. (1991)in earlier studies of compressible turbulence closures. They

are the subject of this work.

The dilatational covariances also appear in the internal energy equation, here written in terms of

the mean temperature with a constant Cv:

< p > cvD T = PT -- < pd > + < p > % + < p > _c + TT

Where TT is the transport of the mean temperature including such effects as heat flux and

the turbulent or pressure transport. The production, for a specific class of flows, is given by



PT = -PD + 2 < p _> (S 2 + W _) where the strain and rotation tensors are defined to be

1 2
symbolically equivalent to the incompressible case, ie. traceless: Sij =_ _[Ui,jwUj,i-fD_ij],

= _[b,,3-5_,i]. Note that Sjj : 0 since D = Uj,j. There are additional terms depend-Wij 1 _

ing on heat or species transfer and fluctuations in fluid properties: they are not germane to the

present analysis. Note that the dilatational covariances appear with opposite signs in the kinetic

and mean internal energy equations. The dilatational covariances represent an irreversible, ec, and

reversible transfers, < pd >, of energy between the mean internal energy field and the fluctuating

kinetic energy field.

The pressure-dilatation covariance, < pd >, and the dilatational variances, < dd >, -which is

related to the dilatational dissipation - have been the subject of several studies stressing both the

fundamental issues in understanding the physics as well as obtaining mod@ls suitable for use in

engineering calculations. In addition to the aforementioned works of Zeman and Sarkar, additional

insight into these terms can be found in the studies of Durbin and Zeman(1992), Zeman and

Coleman (1991), Zeman (1993), Erlebacher et al. (1990), Sarkar (1992), Sarkar e$ al (1991a,

1991b), Blaisdell et al. (1991), Blaisdell and Sarkar (1993), Lee (1992).

The present approach differs from the approaches of both Zeman and Sarkar. A low turbulent Mach

number expansion of the equation of state, the Navier Stokes, the continuity and wave equations is

conducted. The problem is recognized as a singular perturbation in as much as there are two relevant

length scales: an inner scale, £, associated with the turbulence field, and an outer scale A ,_ g/M,

associated with a propagating "acoustic" radiation field surrounding the vortical motion producing

the radiation field. The perturbation development produces an algebraic constitutive equation for

the fluctuating dilatation: the continuity equation, rather than being a prognostic equation for the

density, becomes a diagnostic equation for the fluctuating dilatation. Taking the relevant moments

of the expression produces constitutive relations for < pd > and < dd >. Assuming homogeneity

and quasi-normality expressions without any undefined constants are obtained for <: pd > and

< dd>.

Retaining only the lowest order isotropic contribution produces simple expressions in terms of an

incompressible turbulence for the unknown covariances are found. The expressions are then given

in terms of quantities carried in a single-point closure.

The analysis can be contrasted to more traditional approaches using linear stability theory. Lele

(1994) provides a resume of several of these works. Despite the inherent limitations in the linear

stability analysis there has been some useful light shed on the dynamical aspects of the effects of

compressibility on the flow. Here a statistical approach to the problem is taken. Such an approach



accountsfor the nonlinearityof the phenomena.A statisticalapproachapproach,however,does

averageoverthe manyinterestingdynamicalfeaturesof thefluctuationflow_butdeliverssomevery
interestinginsightsindicatingthenatureof thecumulativeeffectsof the fluctuations.Of particular

note is the interpretationof the effectsof compressibilityasanaddedmechanismfor the transfer

of energybetweentheturbulencefield andthe meaninternalenergyfield. The theorypredictsthe

mechanismandthe rateof this intermodalenergytransfer.

It is found,in analogywith the pressure-straincovariancesin the Reynoldsstressequationsfor an

incompressibleflow, Ristorcelliet al. (1994), that the representations for the dilatational covari-

ances have a rapid and a slow component. However, unlike the rapid-pressure in the incompressible

problem, the rapid component depends on the spatial area of the rapid-pressure correlation. This

behavior results in a dependence on a "gradient" Mach number: a Mach number formed using

the mean velocity gradient and a length scale of the turbulence. This quantity appears to be an

important parameter in distinguishing the effects of compressibility in a mixing layer from those in

a boundary layer, Sarkar (1994).

Several other interesting results have been found. These are now highlighted:

1) The pressure dilatation < pd > can be either positive or negative depending on the rate of

change of the kinetic energy, the mean temperature, the length scale of the turbulence and the mean

velocity gradients. For a near equilibrium flow, as long as the production exceeds the dissipation
_ :/3k

by an amount that scales with the square of the turbulent Mach number, Mt2 - 7-, and the rate

of increase of the internal energy field, the pressure-dilatation will be negative transferring energy

from kinetic to internal modes.

2) The representation for < pd > can be shown to behave as an added mass term in the the k

equation: inertia is added to the turbulence by the capacitance of the fluctuating pressure field.

The fluctuating pressure field, or equivalently the mean internal energy, acts as a capacitor storing

energy fed into the turbulence by the production and then transferred to the internal energy by

<pd>.

3) The pressure dilatation, < pd >, scales with M_ with order 2tl_ and higher corrections. The

dilatational dissipation scales as M¢4 with a Ret I dependence; Rt 4 k2= g_ is the turbulent Reynolds

number. For high Reynolds number flows, much higher than those seen in DNS, the dilatational

dissipation is found to be small; the primary effects of compressibihty are due to the pressure-

dilatation. The effects of compressibility, occurring through the agency of the pressure-dilatation

covariance, are found to be important in nonstationary flows.
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4) Therapid portionsof both < pd > and < dd > scale with the relative time scales of the cascade,

Sk/e and Wk/e, (the mean strain and rotation) to the second and fourth powers. With the

concomitant appearance of the turbulent Mach number Mr, the expressions are found to scale with

the mean deformation and mean rotation Mach numbers St/c and W_/c. It is these Mach numbers

that distinguish the mixing layer from the equilibrium boundary layer and thus the representation

can discriminate between these two types of flows. The appearance of the two different gradient

Mach numbers indicates a dependence of the dilatational covariances on the relative amounts of

strain versus rotation; a fact not yet looked for in experimental or numerical results.

5) Unlike the incompressible dissipation, in which the viscosity sets the small scales but otherwise

has very little effect on the cascade rate, the dilatation dissipation is, in this linear theory, dependent

on the viscosity. For a fixed M_ number, as Rt _ c¢, the dilatational dissipation vanishes. The

compressible dilatation doesn't appear to be able to be understood as a spectral cascade rate set

by the large scales of the flow.

6) It is seen that the density fluctuations are related to the incompressible pressure fluctuations,

p = _p which, upon rescaling, can be understood as, p = M2p. This indicates that compressible

numerical simulations starting from "incompressible" initial conditions are more consistently ini-

tialized with nonzero initial density and temperature fluctuations. One can speculate that initial

conditions inconsistent with the variances associated with the incompressible pressure may create

a wave field that may delay the decay of the transients or that may not even decay during the

course of a DNS. These transients are analogous to the transients associated with the free motion

of a second order system, y1_ + yr + y = 0 relaxing from some initial condition. This situa-

tion appears to correspond to the analysis followed by Erlebacher et al. (1990) and Sarkar et al.

(1991b). The dependence on the initial conditions in compressible isotropic simulations has been

thoughtfully noted in Blaisdell et al. (1993). The crucial point, as is made clear by the analysis, is

that the initialization of any calculation with zero fluctuating temperature, density or dilatation is

inconsistent with a finite non-zero turbulent Mach number.

The present treatment for the effects of compressibility can be thought of as analogous to the forced

system, y" + y' + y = f(_t); the forcing coming from the vortical motions of a turbulence with

non-zero Mach number in which the effects of transients from initial conditions has faded. The

analogy can be made exact, however, doing so is not relevant to the present subject.

The present article is organized in the following fashion: governing equations, analysis, discussion of

physic of the results of the analysis, discussion of limitations and assumptions. The first two sections

are fundamental in laying the ground work for the representations for the covariances with the



fluctuatingdilatation: first asimpleheuristicpictureof thephysicsispresentedafterwhichasystem

of equationsconsistentwith the physicspresumedis derived. In the subsequentsectionand its

four subsections,theassumptionsof homogeneityandisotropyareexploitedin obtaininganalytical
expressionsfor the desiredcovariances.Themethodsof statisticalfluid mechanics,followingthe

inceptionalworksof vonKarmanand Howarth(1938),Batchelor(1951),and Proudman(1952),
arereliedon extensively.Asa byproductof thesectionon therapidpressure-dilatationcorrelation

anexpressionfor thepressurevariancein anarbitrary three-dimensionalmeanflow is derived.

Later sectionsdiscussthe physicalimplicationsof the representationsderived. Qualitativecom-

parisonis madeto thephysicsthat isknownfor severalsimplecompressibleturbulent flows. It is

shownthat the modelsshownoeffectsof compressibilityin theequilibriumadiabaticwall layeras
is knownto be the case.Thedocumentfinisheswith a summaryof the limitations and assump-

tions built into the theorywhichsuggestfuture workaswell as the classof flows for whichthe

representationsareexpectedto beuseful.

This articleis meantto be primarily analytical.A simpleperturbationanalysisandthe methods

of statisticalfluid mechanicsareusedto investigatethe implicationsof afewsimpleandreasonable

assumptions.The resultsarea mathematicalconsequenceof the initial assumptions.The article

is intendedto be a documentationof this procedureand its implications. The objective is to

providingmetaphorsand nondimensionalnumberswith whichto understandand further explore
diverseissuesin compressibleturbulence.Testing,verifying,exploringand evolvingthe present

analyticalresultsintoaworkingturbulencemodelsuitablefor engineeringcalculationsis thesubject

of a sequelworknowin progress.Thesemorequantitativeissuesareaddressedin severalworks

plannedandin progress,Ristorcelli(11995),Ristorcelliet al. (1995).

2.1 A physical background for the mathematics

Before presenting the mathematical development leading up to the analytical expressions for pres-

sure dilatation and the dilatational covariances a physical picture underlying and suggesting the

mathematical development is described. A more formal and mathematical presentation is given in

due course.

It is useful to keep in mind the one essential and central bit of physics that forms the lynchpin of the

theory and makes the present method and results possible: in the near field of an acoustic source,

whose size is small with respect to the wavelength of its emission, the fluid behaves as if it were

incompressible. This observation appears to have been first made by Landau and Lipschitz (1958)

and is a cornerstone in the method of matched asymptotic expansions in the field of acoustics.
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Threebasicideasform the foundationof the pseudo-soundtheoryfor the dilatational covariances.

Thefirst is recognizingtheproblemasa singularperturbationproblem- it t_-astwodifferentlength

scales.As it is the turbulencethat createsthe pressureand densityfluctuationsin the medium

the frequenciesof the compressibledisturbancesarethe sameasthefrequenciesof the turbulence,
c/)_ ,,_ _/_. The two length scales are: a correlation length scale associated with the fluctuations

of the turbulence, £, and a length scale A ,,_ C/Mt associated with the propagation of pressure

and density fluctuations associated with the turbulent fluctuations. Here Mt = (2k/3)1/2/c is

2 = 7P_c/Poo is the sound speed.the turbulent Mach number where k = 1/2 < ujuj _, and coo

The turbulent Mach number is to be used as the small parameter in expansions of the compressible

equations to obtain representations for the effects of compressibility as manifested in the covariances

with the fluctuating dilatation. Underlying the low Mt assumption which leads to the two disparate

scales is what is called, in the sound generation problem of aeroacoustics, the compact-source

assumption. This is equivalent to the idea that the flow structure covers a distance small with

respect to the length scale of the compressible radiation it emits. Closely related to these two

length scales are two time scales: one associated with the convective modes of the flow, say fi/_,

and the sound crossing time - the time it takes for a information to cross a typical scale of the

turbulence, c/_. Note that the conventional definition of the Mach number is used: it is the ratio

of a characteristic fluctuating velocity to the (mean) sound speed. This is in concordance with the

conventions of the acoustics literature from which some of our ideas are drawn.

The second idea concerns the pressure. In the sound generation problem, two pressures, an "acous-

tic" pressure which propagates and a pseudo-pressure associated with the convective motions of

the fluid, are sometimes distinguished. The term pseudo-pressure was first coined by Blokhintsev

(1956) as quoted in Ribner (1962). The term propagating pressure will be used for the term "acous-

tic" pressure so as not to imply that the problem is linear as the propagation of sound is assumed to

be in the small disturbance limit. Without attempting to be precise, the pressure fluctuations in a

fluid satisfy, to the degree suitable to the present heuristic discussion, the following wave equation,

Lighthill (1952)

(2)

where p represents the deviations of the fluid pressure from its value at the static reference state.

Care must be taken in assessing which solutions to this equation are relevant to compressible tur-

bulence modeling. Solutions to this equation are comprised of the homogeneous solution, which

obeys the sourceless wave equation and the wave equation with source due to the turbulent fluc-

tuations. The sourceless wave equation, essentially the equation of linear acoustics, describes an



acousticfield resultingfrom certainspecificationof the boundaryconditionsor initial conditions.
It haslittle to dowith the vorticalmotionsassociatedwith thefluid turbulencethat arethe source

of the propagatingwavefield. FollowingRibner(1962)the fluid pressureis decomposedinto its

convectiveandpropagatingpartsp = Pc + Pp where Pc satisfies

-- Pc,jj = (pUiUj),ij (3)

and therefore pp satisfies

C--2 = C--2c_ Pp,tt -- Pp,jj -- oo Pc,tt • (4)

In the adiabatic limit the right hand side can be written as (-p,tt) and is therefore related to

changes in volume of the fluid element - the dilatation - that generates the propagating pressure.

In the region of the fluid turbulence, for low turbulent Mach number, the pseudo-pressure is larger

than the propagating pressure whose source is from fluid motions. Far from the turbulent portion of

the fluid, the propagating pressure is the major portion of the pressure field as the pseudo-pressure,

being associated primarily with the convective motions, decays rapidly. Thus, there is an inner

region of scale _ in which the major portion of the pressure is associated with the vortical motions

and an outer region, or an acoustic mantle of scale A, in which the the propagating pressure is

the major component of the pressure field. In the inner region of scale t_ << A, the sound speed

is effectively infinite: on a time scale of the flow, signals are felt throughout the region of scale

effectively simultaneously. Which is to say that, in the near field, pp satisfies the following Poisson

equation

-- --Coo Pc,tt •pp,jj = -2 (5)

These ideas, weU-known in studies of sound generation, were first understood as a singular per-

turbation by Landau and Lipschitz (1958). A more formal presentation of these ideas is given in

the following section. To obtain representations for covariances with the dilatation, only the inner

solution of the singular perturbation problem, were the pseudo-pressure dominates, is used. This is

consistent with the observations of Sarkar (1992), Blaisdell and Sarkar (1993), in which it has been

found, numerically, that the incompressible portion of the pressure makes the largest contribution

to the pressure-dilatation covariance.

The third idea is that equations should uniformly approach their incompressible form as the Mach

number goes to zero with bounded derivatives. These facts are used to produce the gauge functions

in a perturbation expansion in which the small parameter is related to the Mach number of the

velocity fluctuations, the turbulent Mach number, Mr. This does not limit the theory to low mean



flowMachnumbers.In general,the aerodynamicproblemrequiresanassessmentof the effectsof

compressibilityon aflowof arbitrarymeanMachnumberasfelt throughthe_compressiblenatureof
the low Machnumberturbulent fluctuations.In this waythe turbulentMachnumberdependence

of the covariancesis obtainedby a systematicandconsistentbalanceof termsin the compressible

NavierStokesequations.Theseareideashavereceivedadditionalamplificationin the veryuseful

andthought provokingworkof ZankandMatthaeus(1991).

The useof the inner solutionis a usefulapproximationin mediumsthat are finite or infinite in

extent for covariances involving at least one fluctuating quantity which does not propagate - whose

source is local. Contributions to the covariances from regions outside of the correlation length, the

outer solution, are negligible. This is because there is no correlation between the local flow field in

the region _ with quantities outside the region _. Such is the case for ,( pd > in which the major

contribution to the fluctuating p is the local pc-

This is not the case for covariances of the propagating field such as, for example, the variance

< dd >, whose far field component may be larger than its near field if the size of the domain,

D, of the flow D/A >> 1 as is implicit in compressible homogeneous simulations. This raises

some interesting and subtle ideas related to the physics of homogeneous numerical simulations:

ideas relevant and important to the interpretation and use of homogeneous compressible DNS to

calibrate models for flows of engineering interest occurring in finite domains.

The present article makes use of, what is called, the compact flow assumption: the size of the

turbulent field, D, is small or on the order of the acoustic scale, D/A _< 1. Sound traveling through

a flow on scales comparable to the wavelength of the emitted sound will begin to be scattered by

the vorticity. In addition its accumulated effects on the flow will begin to modify the flow through

which it is traveling. It is for this reason that acoustic analogies sometimes fail when they are used

to predict the far field of an acoustic source after the signal has traversed the fluctuating medium

for more than a few wavelengths. The present interest is in predicting covariances and this compact

flow assumption is much less of a restriction than in acoustics as the length scale of the correlation

naturally filters out signals coming from portions of the domain that are uncorrelated with the local

vorticity. The compact flow assumption is still necessary in order to neglect covariances between

propagating fields, such as < dd >.

While most flows of engineering interest can be categorized as compact flow problems, homogeneous

compressible simulations do not fall into that category. Homogeneous DNS correspond, locally, to

a turbulence immersed in a general random background wave field which will make contributions

to the variances of a propagating field such as < dd >, even though the coherence between the



local turbulent fieldandthe backgroundfieldthat propagatesthroughit is small. Forthat matter,

the local flow couldbeexactly incompressibleandit wouldstill experiencea net drain of energy

from the backgrounddilatationalwavefield in which it is immersed.The work of Sarkaret al.

(199b) has made progress on problems of this type. The model problem they appear to have solved

in their approach is that of a turbulence of scale g irradiated by an infinite external acoustic field

generated by a turbulence whose statistics are the same as those of the local turbulent region.

Their findings are related to flows in which the size of the turbulent field is, at least, I and the

field is also homogeneous on the A scale (at least) because the assumption of homogeneity made in

compressible DNS. While such simulations shed much basic insight on the effects of compressibility

(this paper could not have been written without those insights) application of such results to models

for compact flows of general engineering interest should be done with these possibilities in mind.

The assumption of homogeneity is made throughout the mathematical development: this is an

assumption of homogeneity on the scale _ which is to say g/L < 1 where L is the scale of the region

of homogeneity. This assumption coupled with the compact source and compact flow assumptions

means that the theory is applicable to flows in which _/)_ < 1, L/A < 1, D/A _< 1. The article of

Sarkar et al. (1991a) and compressible homogeneous simulations in general appears to be relevant

to the problem in which (/,_ < 1, and L/)_ > 1, D/A > 1.

This completes an intuitive background of the physics of the problem and is a useful perspective

from which to view subsequent developments and more subtle side issues. A mathematically more

formal statement of these ideas is now carried out.

2.2 The governing equations: a mathematical foundation

The following equations are used to describe the portion of the flow of interest:

P,t + Itpp,p = -- pUp,p (6)

pui,t + pUpUi,p -k-P,i = 0 (7)

p/p._ = (p/p_)'v (8)

For clarity of exposition the viscous terms are not carried: they can be shown to be of higher order

for the compressible portions of the field, see for example Zank and Matthaeus (1991). This reflects

the fact that the inner solution of the sound generation problem, on the small length scale, g, is

being sought and at these scales viscous effects which attenuate wave propagation are unimportant.

Moreover, a spectral Mach number exhibits an approximate _-1/3 dependence and the scales of

the motion responsible for the fluctuating dilatation will not be the scales of the flow influenced by

viscosity.
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The momentumandcontinuityequationscanbe combinedto givethefollowingequation

P_tt -- P,jj --_ (PUiUj ),ij (9)

which becomes a wave equation for p or p if the gas law is used to eliminate one in favor of the

other. The equation is left in this form for subsequent purposes. There are, of course, some

limitations regarding the application of this set of equations to a general compressible flow. The

most substantial is the assumed form of the gas law valid for isentropic flows: heated wall-bounded

flows have strong temperature effects and as such the application of the theory in the near-wall

region at high Mach number is, strictly speaking, not valid. The development presented here

suggests a procedure for handling the problem in more complex flows with heat transfer.

Perturbing about a quiescent state, (p_, p_), the nondimensional forms of the pressure and density

are taken as p = p_(1 + p'), p = p_(1 + p'). After rescaling the independent variables with e/_

and t?. and dropping the primes, the equations become

P,t -1- Upp,p =- -(1 -k- p)Up,p (10)

(l+p)ui,t + (1 +p)upuiw +e -2 P,i = 0 (11)

P-TP = 1/2 7(7-1)P 2 (12)

P,tt - e-2p,jj = [(1 + p)uiuj],ij (13)

2 = 7P_/P_. Note thatwhere e2 = 7Mr 2 and Mt = ft/coo where _2= 2k/3 =< ujuj > /3 and coo

the choice of time scales is determined by the energy containing scales of the motion: it is a coarse

grained time scale. The fine grained time scale of the problem includes some very interesting physics,

but relevant only in a cumulative, to the construction of a statistical model. A meaningful balance,

giving bounded first derivatives of the velocity, is established if p ,,_ e2. It then follows that p -,, e2

also. The conventional definition, in concordance with the acoustics literature from which some of

our ideas are drawn, of the Mach number is used. It is the small parameter that emerges naturally

in the relevant nondimensionalization of the compressible equations. The use of this symbol as the

small parameter is only for this section; it will be used subsequently to denote the dissipation. Note

that the conventional definition of the turbulent Mach number Mt = (2k/3)1/2/c means that it is a

factor 0.816 or 0.577 smaller than the Mach numbers defined using k or q2 =< ujuj >. Expansions

of the form

P = e2 [ Pl + e2p2 q- .... (14)

P = e2 [Pl + e2P2 + .... (15)

ui = vi + e2 [ wi + e2w2i + .... (16)
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arechosen.Thegaugefunctionsfor thevelocityaredeterminedby the boundednessconditionon

the secondderivativeof the velocity,followingthe methodologyof Zankand Matthaeus(1991),

with differentresults. The only meaningfulbalanceusinga perturbationseriesin unit powers

producesthe sameresults.Notethat this is not the linearacousticscalingin whichpressureand
densitydisturbancescaleasp_ ,'_ peofl 2 _ pocw'cec , p_ "_ po_,M 2 and thus the fluid velocity of a

fluid particle associated with the passage of a wave is w _ ,,_ Mfi.

Inserting the expansions into the equations produces, to the lowest two orders, the incompressible

equations

vi,t + vpvi,p + Pl,i = 0 (17)

Pl,jj : - (viYj),ij (18)

Pl = 7Pl (19)

where vi,i = 0. Note that if the pressure fluctuations are scaled with velocity fluctuations then the

last equations can be written as pl = M_ pl- The correction for the compressibility of the flow.

which does not involve a wave equation on the inner scales, is

Pl ,t + %Pl ,p = - wk ,k (20)

wi,t + VpWi,p +WpVi,p + P2,i = pl(Vi,t +%vi,p) (21)

-- P2,jj = (WiVj -t- WjVi -t- pl Vit'j ),ij --fll ,_t (22)

P2 - 7P2 = 1/2 ?'(7 - 1)p_. (23)

This is a statement of the fact that, over a region of size _, the pressure signal is felt, effectively, in-

stantaneously. Reflect on the fact that e is a small parameter and that analysis will not adequately

represent the effects of compressibility when shocklets are important. The analysis represents the

effects of compressibility as a linear correction to the nonlinear zeroeth-order of incompressible tur-

bulence problem. This completes the derivation of the evolution equations for the inner expansion.

The fuU problem is the sound generation of acoustics and it requires matching the inner solution to

an outer solution. For the single-point turbulence closure problem for the dilatational covariances

the outer solution is not required. The above equations will be used to develop representations for

the unknown terms. Some of the above relations may also be used to specify initial conditions for

DNS that seek to investigate compressibility effects whose source is the turbulent velocity field and

not initial conditions that reflect some other generation mechanism (for example, passage through

a shock).

The terms that are sought in this study are various moments of the fluctuating dilatation d =

Wj,j. The zeroeth-order equations show that the density fluctuations are given by the pressure
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fluctuations,7Pl = Px- The evolution equation for the density fluctuations now becomes a diagnostic

relation for fluctuating dilatation,

-7 d = P,t +vpp,p. (24)

The subscript has been dropped. It is seen that one does not need to obtain a solution to the

evolution equation for the compressible velocity field, wi, in order to obtain its dilatation. A very

nice result indeed _; it forms the kernel of the present pseudo-sound theory. The dilatation is diag-

nostically related to the local fluctuations of the pressure and velocity; it is the rate of change of the

incompressible pressure field pl,jj : (vivj),ij, following a fluid particle. The pressure fluctuations

which originate as a constraint to keep the eddies incompressible drives the near field dilatation.

Note that scaling the fluctuating pressure with the mean energy of the velocity fluctuations indicates

d = M2 [p,, +v p,p ].

Constitutive relations for the pressure-dilatation and the dilatational squared covariances can be

written by taking the appropriate moment of the fluctuating dilatation equation to produce, drop-

ping the subscript,

-27<pd> = < Pp >,t (25)

72 < dd > = < [9[9> A- 2 < pvqp,q > + < Vpp,p Vqp,q > (26)

for a homogeneous turbulence. The overdot is used to represent the time derivative when it appears

within the brackets. It should be noted that the near field compressibility effects, as manifested in

< pd > and < dd >, have been directly linked to the incompressible velocity fields. This fact will

be exploited to obtain expressions for the dilatational covariances in a turbulent flow.

3.1 Analysis for the pressure dilatation covariance in isotropic turbulence

The simplest form of the problem is now solved: expressions for the dilatational covariances for

an isotropic turbulence without any mean deformation are obtained. For those familiar with the

pressure strain covariance modeling in incompressible turbulence, this is analogous to the slow

pressure component of the representation. The constitutive relationship for < pd > is the starting

point. Using the assumptions of isotropy, homogeneity and quasi-normafity, an expression with no

undefined constants can be obtained. The methods of statistical fluid mechanics similar to those

of Batchelor (1951, 1953), Proudman (1952), and especially works of yon Karman and Howarth

(1938) are used.

tA similar expression in different contexts with different assumptions has been obtained independently by both
S. Girimaji (1995) and S.Crow (1970).
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Batchelor (1951) has obtained a representation for the pressure variance, < pp >, in an isotropic

incompressible turbulence. Here, a simpler Greens function method, following Kraichnan (1956),

is used. The pressure of interest satisfies the Poisson equation: p(x, t),jj--- -(viv j ),ij from which it

follows that the two-point pressure variance obeys

' ..... v'' (27)< p(x,t)p(x ,t) >,j¢p,;, < _tj ptq >,ijp'q'

!
which can be written as a differential equation in ri = x i - xi. Following the usual methods for

translationally invariant random processes,

< p(x,t)p(x',t) ),jjpp < ..... ,,_,t (28)

Using the assumption of translational invariance (homogeneity) where now-< p(x, t)p(xr, t) >=<

ppr > (r). The Greens function for the equation is -_ I r_ - r I and the solution is expressed as

1 t _ r p d3 r _<PP'>= s_f < " " >,ijpql -rl-- -- 1)_ V 3 Vp Vcl
(29)

The quasi-normal assumption is used to relate the fourth-order moment to the second-order mo-

ments. The adequacy of the quasi-normal assumption have been investigated over several years.

Batchelor (1951) has presented evidence of its adequacy when invoked with respect to the large

scales of the flow. A spectral version of this assumption is used in the EDQNM theory which since

its inception, as presented in Orzag (1970), has produced very useful results. The adequacy of

the assumption for the large scales of the flow has been documented in the several experimental

works. IVIcComb (1990) gives a summary of these results. In compressible flows the adequacy of

the quasi-normal assumption for the large scales has been investigated in Sarkar et al. (1991a) and

Blaisdell et al. (19931). The assumption produces

t t t t , t t Vi Vlq t< ViVjVpt'q >:< t'it)j >< VpVq :> _- < t, iV p >< t;jVq > -t- < >< t, pt,j > . (30)

2k R 1The definition for the correlation, < viv_ >= -5- ij(r), where k = _ < vjvj >, is used to obtain

< ViVjVpVq >,ijpq 2 < Vit'tp ),jq < VjVlq >,ip--- 2( 3)2RipJqRjq w" (31)

The pressure variance becomes

< pp' >= -2(_)28A-_fRip,jqRjq,i v [ r'- r l d3r '. (32)

Continuity, the fact that Rij,j (r) = 0, has been used. For isotropic turbulence the integral can

be written in terms of the longitudinal correlation function. ;From the inceptional paper of von

Karman and Howarth (1938), the longitudinal correlation, < Vl(0)vl(r) >=< VlVl > f(r) =

13



2kf(r) = -_Ral allows the general two-point correlation to be written as Rij - r,__f, + (f +
3 ' 2r a

1 t

_rf )_ij. The integrand can be written in terms of the scalar function f(_)LFoUowing Batchelor's

(1951) development the fourth-order two-point correlation can be expressed as

1Of,f,, 3Rip,jqRjq,ip = 2 [2f "2 + 2f'f"' + -- + f,2]
7"

= 2 ld[-la(_3f'z)].-- (33)

Inserting into the integrand and applying integration by parts successively produces, returning to

dimensional variables, the Batchelor (1951) result:

< pp > = 2 ( )2p_ _f'2(_)d( = _floe_ 11 (34)

where

f0 °°
If = _f'2(_)d(. (35)

Here, and henceforth, ( = r/g is the nondimensional spatial coordinate such that f f(_)d_ = 1.

Inserting the result into the constitutive relation for the pressure dilatation,

D

-27<pd>- Dt < pp > (36)

produces, in dimensional quantities, the following expression for the slow pressure dilatation,

< pd >s _ 2_p D
3 1 _ [< P :> M2tk] (37)

after accounting for the normalization employed. Here, the undisturbed density and pressures have

been replaced by by the local mean density and pressures. The turbulent Mach number is defined

as M_ = .5./c2k.2 where c2 = 7 < P > /P is the local mean speed of sound.

3.2 Analysis for the variance of the dilatation in isotropic turbulence

The quasi-normal form of the constitutive relation for the variance of the dilatation is

72 < dd >= < ibib> + < vpp, v Vqp,q > . (38)

Starting, once again, from the nondimensional Poisson equation for zeroeth-order pressure field,

p(x, t),jj = -(vivj),ij, an equation similar to the two-point variance of the pressure derived above

can be obtained for the variance of the time derivative of the pressure by differentiation:

< D(x,t)p(x',t)>,JJvp = < (vivj),,(v'vv'q),, >,ijpq. (39)

The assumption of homogeneity has been used and the equation is written in terms of the usual

spatial difference coordinate, ri. Expanding the products of the time derivatives produces,

< (ViVj),t(VtpVtq),t >,ijpq ---- 4 < t;iVj_qVp"">,ijpq (40).

14



and the differentialequationfor the variancebecomes

< p(x,t)D(x',t) >,jjpp = 4 < 9i*ip' >,jq < vjv'q >,ip- (41)

The fact that < t;jv'q >= 0 for homogeneous isotropic turbulence, as can be seen by using the

Navier Stokes equations to rewrite v;j, has been used. The tensor </_i/;} > can be written in

terms of the correlation function, < i,iiJ >=< i,i, > /lij which can be rewritten in terms of the

longitudinal correlation, fl, where as usual, Rij r,D I 1 I • .j- _7 fl + (fl + _rfl )_ij to produce <vit i >:<

i,i, > [3fl + r f;] =< i,i" > r-2(r 3 .fl)'. The bi-harmonic equation for the variance of the time

derivative of the pressure becomes

1 1 ,,),],.< pp' >,jjpp= S _ < ii' > 7[_(rf f; (42)

Using the Greens function method and integrating by parts produces, in dimensional form,

< DP > = 4 p_. _ < i,i, > fo_<__f'f_ d_ (43)

An expression for the two-point variance of the acceleration, < i'i" > f_ is required. Little is known

of the longitudinal correlation for the acceleration. The Navier Stokes equations can be used

to obtain an equation relating the acceleration correlation, fl, to f, the well-known longitudinal

correlation of the two-point velocity correlation t. The dynamical equations of the inviscid portions

of the motion, in the absence of a mean velocity field, can be used to produce the following equation

for the two-point covariance of the acceleration:

• .!

< Vil, i >__ _p_2 < pp, >,jj _ < t'iVjV_t'_ >,jk (44)

where the usual nomenclature of the homogeneous turbulence is in effect and the independent

variable is the two-point separation ri.

The quasi-normal expression for the last term on the right in the evolution equation for the two-

point acceleration produces

< ViYjViVkl t >,jk =_ [< ViVj >< ViVklt > dr < ViVit >< t,jV_ > nt- < ViV kt >< tivjt >],jk

- (2.__)2 1 -_f'2+ r_ r-ff [r 3 (f f,, 4_f f,)], (45)

after substituting in terms of the longitudinal correlation. For operations on functions of r, the

= r-_ d (r2d < >) and the dynamical equation for theLaplacian can be written < ppt >,jj _r PP_

two-point acceleration becomes, after one integration,

< i,i" > .fl - p2 r dr < pp' > - ( )2(f f,, _ f,2 + 4_f f,). (46)
_c r

tThis development was indicated to me by Y. Zhou.
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/_From the expression for the two-point covariances for the pressure, Batchelor (1951), the following

expression can be derived

r dr < pp' >= -4p_(2k}2--- 3 " f'2dr' (47)

Inserting Batchelors expression in the equation for fl and taking the derivative produces the quan-

tity required,

<iA:>]_=-(-3 -)2(ff'''+4-ff''+Sf'f'-r r ff')" (48)

Inserting the expression for < /_i, > f[ into the variance, < 1}/5>= 4 p£-_ < i_i_> fo {f'(()f[({)d{

produces, after some manipulations,

(_) _2 9^2 ,2k,2_2,-_ 4 2 2-s (49)</5/5 >= 4 p_ 3 I_ = ;_ t'oct-g-; _12 - a2 Poce-_2,

where

, ,tt -t- 8 t , 4 ,I_ = fo_f [ff _ff" + -_f f - uf f ]d_ (.50)

In the above expression the usual and empirically verified scaling e ,,o fi3/f has been used. The

characteristic velocity fluctuation will be taken to be _i2 = _k in which case e = c_(-_)3/2/g. Note

that the coefficient of proportionality is twice as large as that when fi2 =< UlUl > is used. The

integral length scale is identified with the longitudinal correlation, g = Ln.

Work by Sreenivasan (1984) has indicated the utility of this expression for turbulent flows. A

more recent and very timely article, Sreenivasan (1995), assesses the accuracy of this expression in

several canonical (incompressible) simple shear flows. For homogeneous shear the data indicates

c_ ,-_ 1 - 2. For the log layer or wake flows a ,,_ 4. For flows with smaller microscale Reynolds

numbers Sreenivasan (1984, 1994) shows that a _ R71. There is also a weak dependence on

nondimensional shear rate.

The fourth-order moments in the constitutive expression 72 < dd >=</5/5 > + < Vpp,p Vqp,q > are

now treated. Beginning with the two-point statistic and writing it as a function of the separation

distance, ri,

I l l

< Vpp,p Vqp ,q, >--_ --[< 'OkVtq >< pp' > + < vpp >< Vtqpt > -4- < vpp' >< vqp >],pq

t

= - < VkVq >< pp' >,pq (51)

where continuity, < vpv'q >,p = 0, and the fact that any isotropic vector is zero have been used.

Further manipulations and setting r = 0 produces

2k

- < vkvq >< pp >,pq = ----_ < pp >,pp -2kbpq < pp >,pq (52)
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wherebpq is the anisotropy tensor, bij =< vivj > /2k - 1g6ij. It is zero in an isotropic turbulence.

A theory including the contribution of the anisotropy of the turbulence woukd be possible assuming

otherwise. Expressing the two-point covariance in terms of its longitudinal correlation function and

performing the appropriate differentiations of < pp' >=< pp > P(r) produces for the fourth-order

moment:

2k 2k 3Pg' (53)-- < PP > ,pp- 3 < PP >3

The second derivative of Batchelors solution for the two-point pressure variance can be used to

_ 4 i s whereshow that P_'- -F_ 3

= '2d (5.4)

The fourth-order moment can be written as

12< vpp,pvqp,q>= -_ < pp> _ I_= 16p_(_) 2 -_IfI_= 54_2 /._)2 e2 s s_-_t'_t -_IllJ. (55)

Batchelors result for the pressure variance and the empirically validated scaling e = o(_-)3/2/g have

been used. The particular form of the expression is chosen in anticipation of later manipulations.

The above results are substituted into the constitutive equation for the variance of the dilatation

- "72 < dd >= < [_p > + < Vpp,p Vqp,q > - to obtain the following simple expression for the slow

portion of the representation for the variance of the dilatation

< dd >s= 9 M4(_)2 [13 + 6I{I_]. (56)5_

The variance of the dilatation scales with the time scale of the large eddies of the spectral cascade.

The integrals are, typically, order one quantities. Zhou (1995) has determined their value from

high Reynolds number wind tunnel data. Values are given in the appendix. Following present
4

conventions, in which the compressible dissipation is defined as < p > e¢ = 5 < P >< dd >, the

model can be put in a form more pertinent to the evolution of the kinetic energy of the turbulence.

Using the definition of the Reynolds numbers, Rt = 4k----L--2to eliminate the viscosity the model can
- 9e<u>

be written in a form appropriate for the kinetic energy equation

16 M 4

e_ - 3o 2 Rt % [[3 + 6I_I_]. (57)

A complete summary of the models is given in a subsequent section and in the appendix.
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3.3 Analysis for the pressure dilatation subject to mean velocity gradients

In this sectionan expressionfor the pressuredilatationa]covariancesfor a_generalhomogeneous
meanvelocitygradientwith nomeandilatationis derived.A similarprocedure,in whichfrequent

recourseis madeto the Poissonequationfor pressure,is followed. The Poissonequationnow

involvesthe meanvelocitygradient. The nomenclatureusedin the pressure-velocitycovariance
modelingin incompressiblesecond-orderclosureswill be followed:the covariancewill becalledthe
rapid componentof the pressure-dilatationcovariances.

The constitutiverelationfor the pressure-dilatationis

D

-27 <pd >= D---t< pp > (.58)

The velocity field is partitioned according to the Reynolds decomposition lJ, + vi; the upper

case denoting a steady mean velocity field with constant gradients the lower case will continue

to indicate the fluctuating field. The mean strain and rotation tensors are Sij = 1 [V,-,j +l'_/,i],

1 [t',,j -l_/,i]; W 2 and S 2 denote the traces of the squares of these matrices. The nondimen-w,.j =

sional form of the Poisson equation for pressure is p(x, t),jj = -(vivj),ij. The fluctuating pressure

is know given by the following Poisson equation:

p(x, t),jj : -- (viV j + Viv j "4- vivj),i j .

Multiplying this equation by a similar Poisson equation for p(x', t) and averaging produces

" t I I

< p(x,t)p(x',t) >,j,j,qq = 4t},j l/_,q, < vj,i vq,p, > + < YiVjypVq >,ijp'q'.

Expressing the differential equation in terms of the spatial separation, ri, produces a biharmonic

equation for the two-point pressure variance

< pp' >,jjqq = - 41/_,j Vp,q < t,jv_q >,ip. (59)

The fourth order moment which represents the slow pressure contribution obtained in a previous

section have been dropped. The Greens function method produces the following solution

1

/ " Iv - r'ld3r ' = 4_,j t_,q Ijqip(r). (60)< pp' > (r) = 41¢'_-,jl/p,q" 8---_ < YjVq >,ip

The dependence of the solution on the mean flow gradients has been expressed. The pressure

variance is known once a representation for the integral Ijqiv is found. For a class of turbulent flows

a tensor polynomial in the anisotropy tensor is a suitable approximation for Ijqip. Ristorcelli et al.

( 1994, 1995a) includes a discussion of issues related to this assumption. Here, only the zeroeth-order

term in such a polynomial will be retained tbr the purpose understanding the physics and obtaining
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scalingsfor the compressibilityeffects.Higherordertermswhichscalewith the anisotropyof the

turbulence,bij =< vivj > /2k - 160 are neglected in these zeroeth-order expressions. Note that

b12 "_ 0.16 is not atypical. At this point, and considering the purpose of the article, the additional

algebra necessary to obtain the anisotropic contributions to the integral is not warranted. A

fourth-order isotropic tensor possessing the proper symmetry and satisfying the continuity relation

Ijiip =0 at r= 0is

where

Ijqip = A_ [_jqSip - l (@6qp + 6jvS,q) ]

r 2 1 .... 2 1 / , , r, d3r, - 12kf2i_"A1 = _ 3jn - 15 87c < vjvq >,,v 15 (61)

Expressing the integrand in terms of the longitudinal correlation in the normalized coordinate,

2k _-2[_3ft,, 7_2f,, 2kf -, r-2< vjv} >,ii = -5- + + 8(f']. The facts < vjvj. >= -5-[r] + 3f] = d(r3f) and.

that in spherical coordinates, the Laplacian is V 2 = r -2 dA;r2d have been used. It is also possible

to integrate by parts allowing the integrand to be expressed in lower order derivatives for more

accurate computation from experimental data. Thus

1 foA1 = i-g + 7_f" + 8f']d_

1 d( -2 3- as fo_ _ _ _(_ f))) d_

2 _g2 fo _fd_ = 1 2kg2lr (62")= 15 I_T 1

and the solution for the rapid pressure variance in an arbitrary three-dimensional mean velocity

gradient can be expressed as

< pp >_= 1 -2 2ke2 [3S2 _4__t'_y_ 5W 2] I_'. (63)

Note that the integral has dimensions of a characteristic correlation area: the rapid pressure contri-

bution to the pressure variance will vary according to the spatial scale of the turbulence unlike the

slow pressure contribution given. This dependence on the spatial scale was first noted by Kraichnan

(1956) who solved the problem of the pressure fluctuations in an isotropic turbulence in unidirec-

tional shear. The results here extend Kraichnans (1956,) results for a planar unidirectional shear

to an arbitrary mean deformation. A very interesting, and more modern, paper highlighting the

physical and wavespace aspects of the results is George et al. (1984). The results are now substi-

tuted into the constitutive equations given above and the rapid portion of the pressure-dilatation

covariance in dimensional variables is then given by

1 _ D 2k _2
< pd >__

30 I1D-t [p_ T cZ [3S2 + 5I¥2] ]
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Note the appearanceof the quantity Sg/co¢; the dependence of the compressibility effects on a

deformation rate Mach number indicate(] by Lele (1994) and Sarkar (19.94) and substantiated

phenomenologically in Sarkar (1994). Note that the theory also predicts a dependence on a Mach

number based on the mean rotation, Wg,/c_. The expression is recast in terms of the turbulent

Mach number and the representation for the rapid component of the pressure-dilatation covariance

becomes

<pd >_- 1 D
30 I_ _-/ [< p > M_g 2 [3S 2 + .SW 2] ] (64)

It is seen that two effects contribute to the pressure-dilatation covariance: one due to the exchange

between potential and kinetic modes of energy (since M 2 ,.o k ) and the other due to changes in the

scale area of the correlation. Increases in the kinetic energy results in a transfer of the mechanical

energy to the fluctuating pressure field. Similarly, increases in length scale, implying a decreased

rate of cascade to the smaller scales, also transfers energy to the fluctuating pressure. Unlike the

slow pressure-dilatation, however, the rapid-pressure-dilatation does not always have the opposite

sign of the growth of kinetic energy but now depends on the rate of increase of the area of the

correlation, g2.

In order to close the representation it is necessary to have an expression for g. This introduces

an element of empiricism; up to this point no phenomenological assumptions, other than the very

reasonable quasi-normal assumption for the large scales, had been made. The usual heuristic

approximation e = c_(2k/3)3/2/_ where a __ 1 - 4 produces

1 _ 2 D<pd> r- 30 ( )3i; c_ _-_ [< p > kM_[3S 2 + 5¢2]] (65)

Here the quantities with a carat are nondimensional deformation and rotation rates eg., _,2 =

(Sk/e) 2.

3.4 Analysis for the variance of the dilatation subject to mean velocity gradients

In the constitutive relationship for the variance of the dilatation the time derivative is replaced

by the mean advective derivative, DD--7= ( ),t + IV)c( ),k which comes from the mean portion of

the advective terms in the expressions for the dilatational covariances. Carrying the substantial

derivative as part of the time derivative term involves no approximation and follows quite naturally

from the Reynolds decomposition. However it is necessary to carry out the development in a

way that preserves Galilean invariance. The quasi-normal form of the constitutive relation for the

pressure dilatation is

oo

72 < dd >=: <pp> + < Vpp,p Vqp,q >
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Thesmallcirclewill beusedto indicatethemeanconvectivederivative;for examplein theequation
oo /)pVv >.above <pp>= < Dt Dt

An expression for <_> appearing in the the constitutive relations for the variance of the dilatation

is obtained first. For the convenience of the presentation the two contributions to the variance of

the dilatation will be denoted 72 < dd >l=<i_> and 72 < dd >_=< vpp,pvqp,q>. Applying

the Reynolds decomposition to the nondimensional form of the Poisson equation for pressure.

p(x, t),jj = -- (ViVj),ij, and taking the appropriate derivatives and dropping the terms quadratic in

the fluctuating velocities (which were treated in an earlier section) produces

(X, t),jj = -- (t°_i Vj -t- Vi _'j ),ij = -21'},j t°'j,/. (66)

Multiplying this by a similar Poisson equation for _ (x', t) and averaging produces the biharmonic

equation for the two-point pressure variance

o o o ! o o I

<p (x, t) (x', t) = vq, , >= 4t;,j (67)

The last equality has been written in terms of the separation variable, r i. The Greens function

solution procedure produces the following representation for the two-point variance

<PP°°'> = 41_i,j l"p,q 8---_1 f <?2jVq),ip°o' Ir -- r'ld3r ' = 41,'_,j I/;,q Ijqip(r). (68)

It is the variance that is required. Following the method discussed in the the previous section, the

fourth order tensor, neglecting higher order corrections for anisotropy, is represented at r = 0, as

an isotropic tensor

1

ljqip = Ar2[i_jq_ip - 4 (_Ji_qv + _jp_iq )]

foo°° oo,A; = _ <vjvj>'vp_3d(- 1,5 I_ (69)

As has been noted little appears to be know about the two-point statistics of the acceleration. If the

acceleration correlation were known it would be a simple matter to show that the integrand is given

o o 3 "m + 7' 2 -by < Yjt, j. >,ii :<t,v> [_ fl _ f{ +8(f_]_ -2 in the normalized coordinate. Unfortunately this is

not the case and an expression for fl in terms of f is sought. The Navier Stokes equations without

the viscous terms, which describe the energy containing range of the flow, will be used to obtain an
0 01 0

expression for the integral, fo < vj t,/>,pp _3d_. Taking the equation for - vi= VkVi,k + VkVi,k +Pi,
o !

and multiplying it by a similar equation for Vj, averaging and taking the trace produces, in the ri

coordinate,

o o !

<VjVj>_---
,f- l_,k l.'i,q < vkvq > - < pp' >,j.i

[< ,I ,I-- P_kti >,ik -t- < ptViVk >,ik ]

-- < tjt'ktqVj >,kq

- ' ' +l.;-.q< t,kt'i*,'q>,k ][I'i,k < ??kt'qt' i >,q

!
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Thetwo-pointtriple covariancesarezerofor homogeneousisotropicturbulenceandthefourth-order

correlationwastreatedin a previoussection.Theequationyields,after taking the Laplacian,the
quantity sought:

o o !

<Vj?.'j>,pp : -- Vi,k Vi,q < vkt,'q >,vv- < PP' :>,JJpp" (70)

In the previous section it had been shown that the two-point pressure variance satisfied the bihar-

monic equation: < ppl :>,jjqq : 41/},j Vp,q ..-. vjv; >,ip" Thus

o o 1

<vjvj>,pv = - t ,k v,,q < vkv; 4ti, < vjv; >,iv, (71)

o o 1

which upon multiplication by _3 and integration produces the desired result for fo_ < vjvj >,vp _3d_

in the definition of I_:

2k
__IT m -- r -- F

•3 2 l/i,k l/},cl Ikq 4Vi,j "tp,q Ijqip (72)

and /_ is seen to be related to the two integrals, Ikq = fo < t,kv; >,vv  ad(, and ,rj, p = fo <

vjv; >,ip (3d_. The isotropic portion of these tensors are related to an earlier integral, I_, defined

in the previous section. The tensors have the following representations

Ijqip - 15I; [SjqSiv - (5ji_qp + _jp(_iq)]

Inserting these expressions into the equation for I_ produces an expression for the two-point accel-

eration correlation integral in terms of the two-point velocity correlation integrals:

I; = 3_ 1; [13S 2 + 15W 2 ], (73)

and the rapid pressure variance becomes

<pp>_OO_ 1.51301[3S_ + 5W2] [13S 2 + 15W2 ] i{e2 _.. (74)

Substituting f = (_(2k/3)3/2/e, and inserting into _,_ < dd >_=<_> which is related to the

dilatational dissipation by e_ = 4v <dd >1--<i_> produces

1 2 2 s M¢ e [3S 2 + 51)V"2] [13S 2 + 151_72 ] a2I[ (75)

after accounting for the nondimensionalizations employed.

An expression for the fourth-order moment, < vvp,p vqp,q >, appearing in <dd >2 is now sought.

In a previous section it was seen that under the quasi-normal and isotropic approximations that

< Ypp,p Vqp,q _>--'-- ---_- < pp >,qq. The Greens function method produces

< pp' >,jj = 41_,j l.:p,q -1 [ d3r I _
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wherethe biharmonicequationfor the pressurevariancefromthe previoussectionhasbeenused.

Followingthe usualprocedures,at r = 0, with Ijq 0 = A_ [_jq6ip - l(_ji_qv =k6jp_iq)] produces

2 2k

< PP >'JJ = 15 3 [3.92 + 5W2]I_" (77)

where

r 2 1 .... 2 2k
A3 = _ 23,, - 15 3 I_ (78)

2kr e/
Using the facts < vjv} >= -_[rj + 3f] = r-2d(r3f) and, that in spherical coordinates the

Laplacian is V 2 = r -2 dr 2 d, produces g = - fo (2f'"+ 7(f" +8f' d(. Reflection on the integrand

will show that it is suitable for application of Gauss's theorem: the exact result Ijjii =-< VjVj >=

_3f(0) is possible and I_ = 3. The integral is nonetheless carried symbolically in the light

of computations extending this theory to anisotropic turbulence. More pragmatically, the integral

expression and its exact value, have been used to evaluate the accuracy of the numerical integration

technique of experimental data.

The fourth-order moment becomes

< vvp,v Vqp,q >- 3 < pp >'qq = ( )2 [3S2 + 5W21I_ (79)

and thus

9

< dd >2= _5 M4 [3S 2 + 5W2]I_. (80)

which allows the second portion of the rapid dilatational dissipation to be expressed as

3(2 s M:
¢r2 = 5 5 ) -_t ¢ [392 + 5I_z2] I_. (81)

r r r and thusThe rapid portion of the dilatation dissipation can be written as the sum ec = eel + ec2

e, =(_)5 M4 [3_2+.5i_2][_1_ + (1)_[13_+15i/i12]a2/_]. (82)

This concludes the analytical development of the representations for the pressure dilatation and

the dilatational dissipation covariances for compact flows. There will be additional mathematical

manipulations of the expressions obtained section in order to understand the implications of the

analysis.
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3.5 Summary of the dilatational covariance representations
The sectionis endedwith a summaryof theresultsof the analysis.The dilatationaldissipationis

r s wherecomprised of a slow and a rapid part: ec = ec + ec

16
8

: 2 R, br?+ 61fI ]. (83)

e_ : (_) 5Mr4 5_z2][3I_ (1)2[13S2 15_z2]a 2¢s [3S2+ + + I;] (84)

It is useful to reflect on the results of Blaisdell et al. (1993), Figure 12, in which it appeared that

the dilatational dissipation could not be parameterizable solely in terms of the turbulent Mach

number. The present analysis suggests its dependence, in simple shear flows, on two additional

parameters, Rt and Sk/es. The pressure-dilatation covariance is a sum of similar terms, < pd >=<

pd >S + < pd >S,

< pd >_ = 2i_ D3 1 _[<p>Mt 2k] (85)

< pd >_= 1 _ D30 ( )31; °_2 D-t [< P > kMt2 [3_2 + 51_2] ] (86)

The constants, denoted by the Ii, in the these expressions are given by integrals of the longitudinal

correlation:

_0 _
If = _f'2 d_

I_ = -_f'[ff"'+ _ff" + _f'f'- -_2ff']d_

1__ = _o_ _ f'2d(

= 2 f d(.

JoI; = - _2fm+ 7_f'+ 8f' d_

Except for two very reasonable phenomenological assumptions the results presented above are

a mathematical consequence of the assumptions that led to the diagnostic relationship: -Td =

p_t +Vpp,p. The assumptions used in developments subsequent to the diagnostic relationship are

the quasi-normal behavior of the large scales and relationship relating length scale to dissipation.

The analysis, apart from the quasi-normal behavior, verified in Blaisdell et al. (1993), has produced

an exact but unclosed, in the context of single-point moment methods, result. The quasi-normal

approximation relates the fourth-order moments of the velocity distribution to the second-order

moments as if the large scales of the turbulence were Gaussian. To achieve closure an expression

for the length scale is required; the very well established phenomenological relationship between
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turbulencelength scaleand dissipation:_ = o_(2k/3)3/2/es is used. With these qualifications in

mind the expressions derived are, in the limit of a homogeneous isotropic turbulence, mathemat-

ically precise. The expressions here may be viewed as the leading order term in a more general

expression in which successive terms scale with the anisotropy and inhomogeneity of the flow. It

is expected that such an analysis for the dilatational covariances will, at the very least, predict

the fundamental nondimensional parameters and scalings in the characterization of the effects of

compressibility.

4.1 The physics embodied in the dilatational dissipation representations

Various aspects of the compressible dissipation representations are now discussed. The dilatational

dissipation is comprised of a slow and a rapid part: ec = e_ + e_ where

16 3f 4

e_ = 3c_2 Rt es [I_ + 6I_I_]. (87)

e: = (_) _es[3S 2+.St_z2][ I_ + ( .)2113S2+1.5|_ z2]o 2If] (88)

Immediately apparent, in contradistinction to other models for these terms, is the fact that the

analysis predicts a dependence of the compressible dissipation on mean flow gradients and Reynolds

number. The dependence on the Reynolds number suggests that assessing the importance of

the dilatationa.1 dissipation on the basis of low Reynolds number numerical simulations may be

misleading when applied to higher Reynolds number flows. Computation done with these models,

for example RistorceUi et al (1995) indicates that the major reduction in spread rate in the mL,dng

layer, for example, is due to the pressure dilatation. The Mach number dependence is also stronger

than the M_ dependence in Sarkars model for the dilatational dissipation, and less steep than the

exponential dependence of Zemans model.

The importance of the dilatational terms is difficult to assess a priori ; their scaling with Mt and

Rt suggests that they are negligible. This is probably the case for the slow term. This is however

not the case for the rapid term. Terms like S appearing in e_ are typically in the range 0- 10;

depending on the mean velocity gradients the dilatational dissipation may or may not contribute

to a flow. The equilibrium (incompressible) homogeneous shear, for example, has Sk/e __ 6; the

equilibrium log-layer Sk/e __ 3.3. For these planar flows S and I_7 are the same. Using _' _ 10 as

an upper bound the quantity [3S 2 + 51_I/2] ,-_ 10 3. When squaring it again, as occurs in the I_ term,

the fact of its M 4 dependence is easily compensated.

The present mathematical development also shows the importance, in mean fields solely charac-

terized by the mean strain and rotation, of a Mach number based on the mean velocity gradient.
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Sarkar(1994)hasdefineda gradientMachnumberasMg = S_/c where, for simple planar flows,

Ui,j = U1,2 = S and the length scale he used is transverse two-point correlation of the longitudinal

velocity. In this article _ will be taken as the traditionally defined integral scale. Using the scal-

ing f = a(2k/3)z/2/es the dependence on the mean deformation can be related to the turbulent

Mach number and the ratio of strain to correlation times: Se/c = o_2SkM a-_SMt Ms._ Z:-,, t = =

For a general three-dimensional flow the theory makes a distinction between a Mach number

based on the mean strain and the mean rotation. A second gradient Math number is defined

H Tg/c = aS_.gT__,lt2wk ,, = c_5,21?VMt = Mw. For simple planar flows the mean rotation and strain

are the same, Ms = Mw and the mean gradient parameterization, Sf/c is complete. For flows

characterized by mean pressure gradients and bulk dilatation additional work is required.

The rapid portion of the dilatational dissipation can be rewritten in terms of these two mean

gradient Mach numbers as

e: ,._ M_R_____es [3M_ + 5M_1][3I_ + (1)21135'2, + 1,51_z2] a 2 I;]. (89)

The structure of the model is seen to be similar to the Sarkar model, ec o¢ M_e_, but now with a

coefficient that is not a constant but depends on the Reynolds number and the mean strain and

rotation Mach numbers.

Sarkars (1994) heuristic reasoning can be used with success to indicate the behavior of the dilata-

tional terms in different mean flows. Though Sarkars (1994) subject is the changes in the anisotropy

of the turbulence due to compressibility, as indicated by the work of Abid (1993), his arguments

are equally applicable to both the dilatational dissipation and the pressure-dilatation eovariances.

Sarkars (1994) arguments indicate that the effects of compressibility are much larger in the mixing

layer than in the equilibrium boundary layer: the mixing layer is stabilized with respect to the

boundary a layer by compressibility. The difference between the compressible mixing layer and the

boundary layer flow can be parameterized in terms of a gradient Mach number, Mg. In Sarkars

(1994) examples Mg (proportional to Ms) for the mixing layer can be an order of magnitude larger

than that for the boundary layer. The same reasoning using the a mean gradient Math number

applied to the dilatational dissipation indicates that compressibility dissipation effects are substan-

tially more important for the mixing layer than for the wall boundary layer. Using Sarkars (1994)

values and definition of the gradient Math numbers, Mg ,,_ 6 in a mixing layer while in the boundary

layer M 9 -- 1 and the effects of the compressible dilatation are an order 62 more important in the

mixing layer than in the boundary layer. A similar variation is seen using Ms to characterize the

effects of compressibility.
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GradientMachnumbertype quantitieshavebeenidentifiedin the worksof Durbin and Zeman

(11992),Cambonet al. (1993), and Lele (1994). The quantity has been given various physical

interpretations. Durbin and Zeman (1993) have, in the context of a RDT theory for compressed

turbulence, interpreted it as the change in Mach number over an eddy of scale 2. It can also be

understood as the ratio of the acoustic propagation time across an eddy to the mean deformation

time scale, Lele (1994). Reviewing the analysis indicates a more thermodynamic, rather than kine-

matic, origin and interpretation of the gradient Mach number. The St in the gradient Mach number

appears because of the scaling of the rapid pressure integral with the area, as was first noticed by

Kraichnan (1956). The c in S_/c appears because of the linearization of the gas law relating the

fluctuating p and p about the local mean pressure and density state. It sets the magnitude of the

proportionality constant in the dimensional form of the diagnostic equation relating d and p. With

these ideas in mind one is led to interpret the gradient Mach number as an indication of the relative

magnitude of the pressure fluctuations (due to shear) to the dilatational fluctuations as set by the

local mean density and pressure (which need not be adiabatically related).

Mention should also be made of the Wilcox (1992) analysis of the sensitivity of the flat plate friction

coefficient, c/, to models for the dilatational dissipation. His arguments show that models, such as

the Sarkar et al. model (1991b) or Zeman (1990), predict effects of compressibility when in fact

there are none. Sarkars (1991b) model, for example, undesirably reduces the skin friction in the

compressible flat plate flow because of the modification of the effective von Karman constant. (It

should be made clear that Sarkars model was intended for use in free shear flows such as the mixing

layer: it was after all calibrated using the homogeneous DNS of a compressible shear). Wilcox's

analysis has been repeated for the current model. The modifications to the von Karman constant

of the present model are smaller than that of the incompressible form of the modeled equations.

This is because of the near wall Me dependence.

The thoughtful reader will have noticed that the analysis has produced a representation for the

dissipation that depends on the Reynolds number. The magnitude of the dilatational dissipation

depends on the viscosity: for a fixed Mr, as Rt _ ec, the dilatational dissipation vanishes. This is a

rigorous consequence of the diagnostic relationship, -Td = p,_ +%p,p, derived from the perturbation

method and subsequently employed to obtain the results. The initial assumptions lead to an

expression for the dilatation that is related to the pressure fluctuations, an essentially inviscid

phenomena. The dependence on the viscosity arises when one computes the compressible dilatation

from its definition using the variance of the dilatation: ec = ,_v <dd >.
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It appearsthat, in thesmallturbulentMachnumberlimit, that theusualinterpretationof dissipa-

tion type quantitiesasspectralfluxesis not appropriatefor the dilatationaldissipation,This is a

findingwhichhascausedsomeconsternation and much consideration; it is, however, a mathemat-

ical consequence of the initial assumptions. A portion of the ideas arising from diverse discussions

with colleagues will serve to make this result plausible; as will, perhaps, the fact that the results are

consistent with EDQNM results. The utility of the results of the analysis, in the context of their

application to computing engineering flows, is another and very different subject to be treated in a

subsequent work.

That the compressible dissipation might not be interpreted as a spectral flux (as is the case of

the solenoidal dissipation) is suggested by results given in the EDQNM of Bataille (1994). In

Batailles (1994) simulation the energy spectrum is divided into its incompressible components and

compressible components. The solenoidal spectrum, Ess, is found to scale, as is usual, n-5/3; the

compressible spectrum, for small Mach number, is much steeper and scales as Ecc "_ n-11/3.

Multiplying by n2 the solenoidal and dilatational dissipations are found to scale as nl/3 and n-5/3.

The negative power law scaling of the dilatational dissipation indicates that, unlike the solenoidal

dissipati.on, the dilatational spectrum peaks in the lower wavenumber regions of the spectrum.

Such a point of view can also be understood by more heuristic arguments involving a spectral Mach

number, Mt2(n) ,,_ E(n)n/c 2. Using the incompressible spectrum, as the compressible spectrum

falls off faster, produces Mt (_) "_ k -1/3 suggesting that the dilatational dissipation is a result of

a combination or competition of effects that are important at different scales of the motion: the

energy in fluctuating dilatation at the large scales and the sharp gradients necessary for viscous

dissipation at the small scales. This is intuitively consistent with the fact that, for fixed Mr,

increasing Rt by decreasing the viscosity adds more small scales to the field that are also more

divergence free. Thus, with the length at which the gradients are strong enough to undergo viscous

dissipation becoming smaller and simultaneously more divergence free, there results a net reduction

of the dilatational dissipation.

These ideas must be tempered with the fact that these results come from a low turbulent Mach

number perturbation method - a linear perturbation about the nonlinear incompressible problem.

This is not to say that physics related linearly to the velocity field exhibit a steeper spectral slope

than the energy spectrum. The linearly related spectrum of a passive scalar temperature, which

scales with ,- n-5/3 Tennekes and Lumley (1972), doesn't. The problem is more complicated than

this and the analogy is inappropriate. While a low turbulent Mach number analysis is expected to be

appropriate for most flows of aerodynamic interest, it must be remembered that the nonlinear self-
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interactiontermsof the compressiblevelocityfieldareabsentin thisanalysis.As Mt ---" 1 nonlinear

terms and shocklets are expected to become important. This analysis has no relevance to flows in

which shocklets are a major portion of the dissipation. On this point the ones attention might go

to the homogeneous shear results done as part of G. Blaisdells thesis, published in Blaisdell et al.

(1993); it was found that shocklets, for moderate turbulent Mach numbers, contributed very tittle

to the dilatational dissipation. Note the difference in definition of the turbulent Mach numbers.

Batailles (1994) EDQNM results show that as the Mt increases the slope of Ecc decreases. Though

outside the range of the validity of the simulation, the EDQNM simulation shows that as Mt _ 1,

the slope of Ecc is approaches the slope of Ess. These speculations concern phenomena outside of

the range of validity of the linear theory and the EDQMN; within the range of validity the results

of the perturbation theory are consistent with the EDQNM simulations. These EDQNM results

have been found to be insensitive to the form of the small scale damping terms.

4.2 The physics of the pressure-dilatation covariance representations

The phenomenological implications of the pseudo-sound assumptions for the pressure-dilatation

covariance are now explored. Unlike the compressible dissipation, which represents an irreversible

transfer of energy, the pressure-dilatation represents a reversible transfer of energy between kinetic

and internal modes. This reversible rate of transfer is proportional to the departure of the flow

from equilibrium and with a simple rearrangement of terms the pressure-dilatation is seen to be

equivalent to an increase in the flows inertia. Subsequent to this discussion the representations

for the pressure-dilatation covariance are further manipulated to produce a final expression that is

more easily understood and applied. The pressure-dilatation is seen to be proportional to the net

imbalance of production, transport and dissipation of k and T. The pressure dilatation is also seen

to be a function of the how rapidly the eddy turnover rate, k/es, tracks then mean deformation

and rotation, S and W.

The pressure-dilatation covariance is a sum of the slow and rapid terms < pd >=< pd >_ + <pd >_

already given. The full pressure-dilatation covariance representation can be written as

D D
< pd > = -Ipd -_ [< p > kM2t ] -- I_d -_ [< P > k M 27-] (90)

where

= [3s +

3 1 +IpdT

i_ d _ 30 ( )3o2i_.
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Let 7-becalledthe relativecascadeor eddyturnoverrate. By expandingthedifferentialsaccording

to the productrule the expressionfor < pd> can be suggestively rearranged in the k equation to

produces terms representing an "added mass" effect as well as two additional source terms:

D D
[l+IpdM 2] < p > _ k = Pk - < P > e - k lpd -_ [< p > M_]:- < p > k M_I_d D--_T.

The evolution of the kinetic energy experiences additional inertia. The flow appears to act with an

added mass equal to __I_ times the weighted sum of the integrals: Iprt and Ipd. The additional inertia

is due to the reversible transfer and storage of energy in the internal energy (mean temperature)

field. This role of the pressure dilatation, as a transfer between internal and kinetic modes of

energy, appears to have first been noticed by Zeman (1991) and explored further in homogeneous

shear by Sarkar et al. (1991a). Thus the effect of the pressure-dilatation is to reduce the effects of

production and dissipation unbalance by a factor 1 + IpdMt 2.

Note also the appearance of the nonequilibrium and history effect, 7- and 21_/,. The first reflects how
o

rapidly the eddy turnover time tracks the mean velocity gradients. While the second, Mt reflects
o

how rapidly the kinetic energy and mean internal energy adjust to each other. Thus k is influenced

by the rate at which the pressure dilatation can equilibrate the "potential" difference between the

k and T fields. The appearance of relaxational effects incompressible flows have been noted in the

calculations of Abid et aI. (1995).

The mean deformation and mean rotation rate Math numbers play a role in the added mass term.

They appear in the product of IpdM_. Thus, the gradient Mach numbers, as manifested in the

term Mr27-, also effects the development of the flow by influencing the pressure-dilatation terms.

The representation distinguishes the mixing layer and the boundary layer not only through the

substantial derivative terms but also through the mean gradient Mach numbers. These terms are

expected to make a difference primarily in flows with streamwise variations.

Additional analysis will now produce a final form for the pressure-dilatation representation. The fact

that the pressure-dilatation covariance depends on the rate of change of Mt 2 shows that represen-

tation couples the kinetic energy equation to the internal energy equation. The pressure-dilatation

covariances can be expressed in terms of k and T through the definition of Mr2; this suggests that
o

M] in the representation can be eliminated. The substantial derivative of Mt 2 is easily found from

its definition and the ideal gas law to be

o o
o

M:= M: [ k T
k T ]" (91)
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Themeantemperatureandk equationsare,with theassumptionof constantcv,

< p > c_,D T = PT - < pd > + < p > % + < p > ec +- Tr

<p> D k = Pk +<pd>-<p>es- <P>¢c + Tk

o

will be used to ehminate Jilt from the equations. Examination of the two equations for k and T

shows some important effects. Both T and k receive energy from the mean flows kinetic energy

through the production terms, PT and Pk. The signs of PD and Pk can be of either sign in

which case energy from the mean flow can be diminished or increased by interactions with the

turbulence or with the mean internal energy of the flow. Note that if one insists on a Boussinesq

eddy viscosity approximation for the Reynolds stresses that Pk allows only a one way transfer of

energy from the mean to the turbulence. The dissipation terms, < p > es+ < P > ec, are always

positive representing a flow of energy from the turbulence to the internal energy of the fluid. The

pressure-dilatation, exchanging energy between kinetic and internal modes, on the other hand can

be of either sign.

The pressure-dilatation covariance, for a flow with negligible mean dilatation, can be written as

<pd>= - < p > tpdM 2k[2 T ] - < p > k M 2 t;d T (92)

o o

Using the equations for k and T and the definition of the Mach number in terms of temperature,
k 3 2

c.T -- -_Mt 7(_ - 1) produces a simpler and final and almost algebraic expression for the pressure-

dilatation covariance:

<pd>=-_pdM_[Pk- <P>e+Tk - 43-Mt2"_(7-1)(PT+ <p> e+TT)]

-<p>k i?x
• pd "

(93)

The streamwise adjustment of the eddy turnover time scale to the mean velocity gradients remains.

Here _ stands for the combined solenoidal and compressible contributions to the dissipation and

2Ipd
Xpd =

1 + 2IpdMt 2 + 3I_dM4"/( 7 -- 1)

Xpd = 3 r 4

1 + 2Z dM2+  gdi, - 1)

The ,_ coefficients are thus functions of the turbulent Mach number, M 2, and the relative turnover

rate 7- through Ivd.

One of the failures of early models for compressibility effects in turbulent flows is their lack of

universality. Current models capture the compressibility effects in the mixing layer, but the same
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models,when appliedto the near equilibriumboundarylayer, add undesirablecompressibility

effects.Herethe dependenceof the resultson the meanflowparameters,suchasthe meanstrain

androtation Muchnumbersandin D/Dt - as manifested in the production-dissipation balance and

in 7- - show that the analytical representations do distinguish between these two classes of flows.

The effects of compressibility have been observed to be negligible in the unidirectional near equi-

librium boundary layer flow. In near equilibrium flows there is an approximate balance between

production, dissipation and transport and therefore D/Dt __ 0: the model then predicts, consistent

with observations, < pd >__ 0. Particularly noteworthy are the predictions for the equilibrium log

layer in which the transport terms negligible: for the log layer Pk -_< p > e and < pd >_ 0+O(M 4)

is a further indicating that these compressibility effects are not important in equilibrium flows. In

the mixing layer or jet, on the other hand, where production is an important quantity, the pressure-

dilatation will shunt energy from the turbulence into the mean temperature thus reducing the level

of the kinetic energy. This has been seen in laboratory experiments an also in calculations done us-

ing these analytical results. These calculations are the subject of studies addressing issues relevant

to turbulence modeling and computations.

For flows in which production is not important the analysis indicates that the net effect of the

pressure-dilatation is (if the contributions of the dissipation and transport to the energy budget

have the same sign) is to increase the level of the the kinetic energy of the turbulence. Such

situations arise in wake flows with and without momentum defects.

Expressions for the pressure-dilatation in two simple flows, the isotropic decay and the homoge-

neous shear are worth considering. Consider first an isotropic decaying turbulence. The pressure-

dilatation covariance is

3 M_'r(7 - 1)] < p > e. (94)<pd >= _:_dM{ [1 +

It is seen that the pressure-dilatation is positive indicating a net transfer of energy from the internal

modes to the turbulence. After which the energy is, of course, dissipated by viscosity and returned

to the internal energy of the fluid increasing its temperature. A portion of this energy, proportional

to/112 and the extent of the departure from equilibrium, can then once again transferred to the

turbulence.

o 0

The T and k equations for the case of an isotropic decaying turbulence are written

D--tDk = - (1 - J_pdM2t )e + }xpdMt43;(7 -- 1)e (9.5)

cv_-_ T = + (1 - XpdM? )e -- XpdM4"/(? '- 1)e (96)
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andthedependenceontheproduction-dissipationbalanceandtheturbulentMachnumberaremore

readilyseen.Note that the factor multiplyingthe dissipationis alwayspositive, 1 -)(.pd]_'l? > O.

Here e = ec + es and that the density has been set to unity for convenience of presentation. Note

that the energy decay rate is explicitly dependent on the Reynolds number through ec. It is, of

course, still imphcitly dependent on the Reynolds number by the dependence of es on the Reynolds

number in a decaying turbulence. This issue has been inconclusively explored in Blaisdell et al.

(1991) in an attempt to assess the effects of compressibihty on the decay law.

The simulations of the isotropic decay by BlaisdeH et al. (1991) and Sarkar et al. (1991) have

indicated a strong dependence on the initial conditions. Neither of these simulations have used

initial conditions consistent with the pseudo-sound analysis. This would require initial conditions

in which 7 < PP >= _ < 00 >=< pp > where < pp > is the variance-of the incompressible

pressure field. Which is to say that the compressible fluctuations are generated by the turbulence

as opposed to imposed on the flow as an arbitrary initial condition. Even the choice of socalled

"incompressible" initial conditions < 00 >=< pp >= 0 is asymptotically inconsistent with finite

initial Mr. This can be verified by expressing _' < pp >=< pp > in primitive variables in which

pressure is nondimensionahzed by p_k.

Blaisdell et al. (1993) has investigated the possibility a polytropic gas law, n < pp >=< pp > where

< pp > is the total pressure variance. It is found that n __ _ in the homogeneous shear and that, in

the isotropic decay, n is initial condition dependent. One may well conjecture that a set of initial

conditions as specified by this pseudo-sound theory might show n __ 7 subsequent to intiahzation.

In which case Blaisdell et al. (1993) conclusion that algebraic models for the dilatational dissipation

are inadequate may have to be qualified. We do concur with the Blaisdell et al. (1993) conclusion

that in situations where the compressible component of the flow is arbitrarily specified by the initial

conditions that such algebraic models will not work.

Sarkar et al. (1991) have modeled - < pd > +ec = alMt2es and the turbulence energy equation

can be rewritten

<p> Dk =<pd>-<p>es- <p>ec =-(l+alMt2)e,.

Keeping only order Mt 2 terms the present analysis gives for the turbulence energy equation, in

apparent contradiction

v k =-(1-xpdM2)esDt

The pressure-dilatation covariance is more important than the dilatational dissipation and will act

to slow the rate of decrease of k by shunting energy from the internal modes (mean temperature)
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whereit is storedinto the kinetic modes.The resultsof the presentanalysisand Sarkaret al.

(1991) are both internally consistent: they treat two different problems._ The present analysis

treats a turbulence in which the compressible portions of the flow are generated by the turbulent

motions. Sarkar et al (1991) treat a turbulence on which is superposed, by the initial conditions, an

M_ compressible velocity field. The postulated M_ initial condition gives rise to an M_ dilatational

field. The effects of compressibility will reflect the evolution of the compressible field in the presence

of an incompressible turbulence and the dilatational field will then be order Mt2 causing an increase

in the k decay. The dilatational field is an order Mt4 effect when the dilatational fluctuations are

generated, not by the initial conditions, but by the vortical fluctuations. These very interesting and

potentially contradictory issues need to be investigated more closely with a DNS in which special

care is taken with the implementation of the initial conditions.

o

Consider now a near equilibrium, 7- __ 0, homogeneous, Tk = T:r = 0, high Reynolds number,

PT _ 0 shear flow. In such a flow the pressure-dilatation is now

<pd >= -xpdM_ [Pk- < P > e - 3 M_?(? - 1) < p > e]. (97)

There are several things worth noting. The first is the change of sign of < pd > noted by Sarkar et

al. (1991a). For flows with small turbulence production the pressure dilatation is positive. If the

production is large and exceeds dissipation by a certain amount the pressure-dilatation covariance

is negative and there is a net transfer of energy from the turbulence field to the mean internal

energy. This is consistent with numerical results of Sarkar et al. (1991a) only here the analysis

indicates when the change of sign of < pd> occurs.

The 7" and k equations for the homogeneous shear flow can be written

D
= (1- XpdM_)[Pk -e] + 3XpdM4_/('),- 1)e (98)k

D¢

cv_--_ T = XpdM_ [Pk- e] + e - _pdM¢_(7-- 1)e (99)

and the dependence on the production-dissipation balance and the the turbulent Mach number

are more readily seen. Note that _pdM_ < 1. Thus, to lowest order, O(M_), the effects of the

compressible dilatation is to reduce the excess production over dissipation in the k equation by a

factor XpdM_ ; this energy is transferred to internal modes and the rate of increase of the mean

temperature is amplified by an additive factor _pdM_ [Pk - e]. The reduction of the turbulence

related quantities seen in compressible flows appears to be attributable to the transfer of energy

from kinetic to internal modes. Computations with this pressure-dilatation representation in the

compressible mi_ng layer have shown it to be primarily responsible for the substantial reduction
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o

in growth rates. Additional contributions come from the 7- relaxational term not carried in the

equations above. These computations, as they represent the use of these retyresentationsfor practi-

cal calculations, are the subject of articles now in progress whose objective is to evolve the present.

mathematical results into a computational model.

If in the representation for < pd > one sets < pd >= 0 one can predict the critical BCt2c,for a given

shear rate, turbulent Reynolds number and anisotropy, at which the pressure-dilatation changes

sign. Below this critical turbulent Mach number there is a net. transfer of energy from the mean

temperature field in which it is stored. Above this critical turbulent Mach number there is a transfer

and storage of energy in the temperature of the fluid rather than increasing the kinetic energy of

the turbulence. Using Pk = ½b12kS and PT = 2 < # > S 2 the critical Mach number as a function

of the anisotropy and shear rate can be obtained. To zeroeth-order

1 kb12S- <p>e
M_ = -4 _ (100)

37(7- 1)[2<p> $2+ <p>e]

Recall that e = es + ec and that in fact. the equation is a quadratic for Mt 2 if the dilatational

dissipations contribution is included. If the dilatational dissipation is not. distinguished a little

more algebraic manipulation produces

M_2 = 4 ½ b,2 _'- 1 (101)
18 _2]3 ")'(7 - 1)[1 + 4Rt "_ J

This is essentially a statement of the fact that as long as the production exceeds the dissipation by

and order Mt 2 quantity

Pk _> [1 +_.Mt2_(7 -1)] <p>e (102)

that there is a net transfer and storage of energy in the mean temperature field. Which immediately

suggests a numerical simulation of a homogeneous shear with an isotropic initial condition. At a

critical Mach number < pd > will change sign as a function of the anisotropy and Reynolds number

of the flow.

5. Discussion and clarification of limitations and assumptions

A few assumptions have been made to obtain representations for the dilatational covariances. The

assumptions are not in anyway unreasonable but do limit the apphcabifity of the results to specific

classes of flows. This section is a compendium of the assumptions; it exists in order to insure that

the applications of these representations be made with an awareness of their limitations. It should

also help asses how much of the physics these representations capture or neglect in any specific
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flow. It is hopedthat full disclosureof the assumptionswill suggestfuture work to accountfor

their potentialshortcomings.

1) To modeltheeffectsof compressibility on the turbulence it has been assumed that the turbulent

Mach number of the fluctuations, Mt2 - 2 k is small. This appears to be the case for several classes-5_-'

of supersonic flows of current engineering interest. The expressions derived are not expected to be

useful for hypersonic flows in which eddy shocklets are important; such a flow situation will, in all

likelihood, require a very different analysis.

As has been discussed, the low Mt assumption is equivalent to the compact source assumption

of aeroacoustics. In the present context, this means that the correlation length scale of the flow

structures producing the dilatational field is much smaller than the wavelength of the propagating

field produced. This allows the dilatation to be algebraically related to the instantaneous material

derivatives of the pressure fluctuations of the solenoidal field.

The low turbulent Math number assumption should not be understood to imply a low mean flow

Mach number.

It should also not, necessarily, imply a low gradient Mach number. The leading order contribu-

tion to the Reynolds stresses, in the low Mt limit, is from the solenoidal field and the lack of

signal communication across an eddy, when the gradient Mach number is high, effects higher order

corrections to the Reynolds stresses. The present analysis treats the leading order dilatational

fluctuations. The form of the equations derived suggests a 'thermodynamic' rather than signal

propagation interpretation of the the gradient Mach number; the gradient Math number scales

the relative magnitude of the dilatational fluctuations to the pressure fluctuations generated by the

mean velocity gradients. Interpreting it as a quantity characterizing the propagation of information

is expected to be important in large turbulent Mach number situations.

2) The scalings employed imply that the equations derived do not account for effects associated

with phenomena that have coherences on much larger length scales. This would include variances

and covariances of quantities that propagate. Such is the case with dilatation which has propagated

into the local turbulence volume from regions more distant than the local integral scale. Though

the correlation with the local turbulence is expected to be negligible, such signals are correlated

with themselves and will make a contribution to the local dilatational dissipation. These effects

are not accounted for in the present development; as such the development is limited to turbulence

fields that are on order of or smaller than the acoustic scale of the flow. This is the compact flow

assumption, D/A < 1, and constitutes a limitation to the current representation. The limitation
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maybenominalfor manyflowsof currentengineeringinterestin whichthecompactflowassumption

is expectedto beuseful.

The compactflowassumptionalsoexcludesthe cumulativeeffects,overscaleslargewith respect

to the wavelength,the propagatingfield on the turbulence,as sometimesoccursin the sound

generationandpropagationproblem.

3) Thecovariancesof thefluctuatingdilatationalfieldareassumedto begeneratedbyandevolvein
accordancewith theturbulencefield.Theydonot resultfrom anyexternallyimposed"acoustical"

fields,or radiationfrom far field turbulence.Nor are they an adjustmentof the flow to initial

conditionswith anacousticalor compressiblecomponentnot generatedby,or otherwiseunrelated
to theturbulent flow.

The scalingsand analysisemployedimply that the sourceof compressibilityin the flow is due to

the turbulencewithin an integralscaleof the positionin question.The effectsof q2c/q2 ,-_ O(M_)

compressible velocity fields, as seen in Sarkar et al. (1991), superposed on the flow by the initial

conditions will produce much higher dilatational dissipation rates. This sensitive dependence of the

dilatatio.nat dissipation rates on the initial conditions has been seen in the simulations of Blaisdell

et al (1993). There are, in all likelihood, complex flow situations in which sizable compressible

fields, q2/q2 are generated. This, however, is not the situation for which the present pseudo-sound

theory has been developed.

Here compressibility effects due to the finite Mach number of the vortical fluctuations are studied.

IN studies of such compressibility effects resulting from the turbulence appropriate initial conditions

are required for DNS. Consistency requires that the density and temperature variances be related

to the incompressible field according to 7 < PP >= _ < 00 >=< pp >. Where, in dimensional

terms, for an isotropic turbulence with no mean velocity gradients the pressure variance is

< pp >s 8 _2 ,n,s (103)
---- _Doc/_ 11

while for a turbulence with divergence free mean velocity gradients, to leading order,

< PP >_ 1 2 2k "2 r 1 2 2)4]_2 [3_2 -t- 5[_ z21 /;. (104)= [3s + 5w r, =

Or, in the context of a DNS starting from incompressible initial conditions, a point-wise propor-

tionality between the fluctuating pressure and the density and temperature is required. The proper

initial condition on the dilatational field is more difficult but may be much less important.

4) The mean pressure and mean density has been assumed locally constant - constant over a length

scale over which the turbulence is correlated. This is also equivalent to the statement that the
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soundspeedis alsolocally constant;the stochasticnatureof the fluctuationsin the soundspeed

hasbeenneglected.A corollary to the locally constant mean density assumption, is the fact that

the mean dilatation is negligible. Thus, for flows in which the mean density and mean pressure

vary appreciably over an integral scale the present representation is only a zeroeth-order theory.

5) The turbulent fluctuations that contribute to the dilatational covariances have been assumed to

obey the adiabatic gas law. This uncouples the problem from noisentropic aspects of a compressible

flow which may be important in wall bounded flows. A scale analysis of the fluctuating dilatation in

the near wall region does appear to indicate that the nonisentropic contributions are higher order.

This may not be the case for walls with large heat transfer.

6) All the expressions presented have been obtained assuming that the major contribution to the

quantities come from the isotropic portions of the statistics of the fluctuating field. The expres-

sions obtained are the lowest order expressions in a series expansion in powers of the single-point

anisotropy of the turbulence. Higher order terms allowing for contributions from the anisotropy

are straightforward in concept but complicated in execution. This has been found to be the case

in a few cases for which such parameterizations have been worked out. Perhaps, if the results are

to be used for engineering calculations, the constants derived should be viewed as requiring some

modifications for the anisotropy of the flow. A DNS might be useful to see which of the several

contributions to the dilatational covariances are most sensitive on the anisotropy of the turbulence

field.

7) Throughout the development homogeneity has been invoked to make the statistical manipulation

tractable. In practice this requires that the turbulent field be homogeneous on a scale t/L < 1

where L is the scale of the inhomogeneity. Clearly few engineering flows meet this requirement;

however, any representation that is created must at least be consistent with results obtained using

this state.

8) The assumption of quasi-normality has been made to achieve the statistical closure for the large

scales of the flow. This involves the neglect of third-order moments with respect to second and

fourth moments. This is an assumption that is extensively used and discussed throughout the

literature. Corrections to the derived relations including the third-order moments are thought to

be minor.

9) The spectrum of the turbulence is assumed to have a negative power law behavior implying

that a spectral Math number of the fluctuations decays with wave number. This suggests that

the portion of the spectrum exhibiting compressibility effects are at the lower wave numbers. It
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is for this reasonthat the viscouseffectshavenot beencarriedin the analysisfor the dilatational

covariances. Such effects may well need to be incorporated in near wall flows.

10) The scale relation e = a'(_)3/2/_ has been used several times. While having substantial

empirical support in incompressible flows it is now being used in situations in which its validity

must be assessed. Is e = a(__)3/2/( valid for a compressible turbulence ? If not how must it be

modified ? What is the best definition of a length scale with which to define a gradient Mach

number ? Implicit in the present derivations has been a longitudinal length scale. Sarkar (1994)

uses a transverse length scale; how does this compare to the longitudinal length scale of an isotropic

turbulence. Should e in the length scale definition include the compressible dilatation ec ? Clearly

since the model is going to be used in sheared flows and near walls one must asses how accurate

this relationship is for such situations. Sreenivasan (1984, 1994) has addressed the effect of shear

on the relationship.

6. Summary and Conclusions

The mathematical consequences of a few assumptions about the size of the fluctuating pressure

and density in a compressible turbulence are followed. A low turbulent Mach number singular per-

turbation has produced a diagnostic constitutive relationship relating the fluctuating dilatation to

the fluctuating pressure and velocity fields. This constitutive relation is the lynchpin of the devel-

opment allowing closure for the effects of compressibility in terms of the divergence-free portions of

the fluctuating flow field. Moments of the constitutive relation produce analytically consistent rep-

resentations for the dilatation variance and the pressure-dilatation covariance in a turbulence field

with and without mean velocity gradients. Application of the methods of statistical fluid mechanics

and the assumptions of quasi-homogeneity, quasi-normal behavior, and isotropy produces expres-

sions for the covariances with the fluctuating dilatation. Except for the well-established empirical

result, _ ,_ (_k)3/2/es, used to close the expressions, no additional phenomenological assumptions

are made. The analysis is, in the low bit limit, exact and produces representations for the effects of

compressibility in which there are no undefined constants. The constants that appear are known in

terms of integrals of the longitudinal velocity correlation of an incompressible isotropic turbulence.

Both Lele (1994) and Blaisdell et al. (1994) have reflected that an algebraic closure for the effects

of compressibility solely dependent on Mt _ appears to be overly restrictive. The present analysis

has quite naturally indicated the importance several additional parameters. The compressible

dissipation is found to be a function of the local values of the turbulent Reynolds number, Rt,

the turbulent Mach number, Mr, the two mean velocity gradient Mach numbers Ms and Mw,

and the solenoidal dissipation. The pressure-dilatation is seen to be a nonequilibrium phenomena.
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It is foundto be a functionof the rateof change of the turbulent Mach number, Mr, the mean

density, < p >, the energy of the turbulence, k, and the two relative time scales Sk/es and

Wk/es. Additional manipulations show that it can be expressed as a function of the production,

the dissipation and the transport. There still remain the nonequihbrium effects associated with the

adjustment time of the eddy turnover time to the time scale of the mean flow.

The analysis has produced a few simple and interesting metaphors for the effects of compressibility

on a turbulent flows. For classes of turbulent flows for which this analysis is relevant, one example

being the compressible mixing layer, the results suggest mechanisms that play a role in the reduction

of the mixing layer growth rate. In short, the pressure-dilatation transfers turbulent kinetic energy

to the internal energy field effectively reducing the relative excess of production over dissipation by

a factor XpdMt 2. Further reduction of k occurs through the dilatational dissipation. These effects

are dependent on the local mean flow gradients and as such suppress growth rates most in regions

of high production.

It is hoped that these results will be of use in further understanding the complex effects of com-

pressibility and stimulate additional new investigations including the assessment of the consequences

and utility of the present pseudo-sound development. Some of the results worth noting are now

summarized:

1) Noteworthy is the appearance of two mean flow Mach numbers based on the mean velocity

gradients. One based on the mean deformation, Ms = S_/c, and another on the mean rotation,

Mw = W(/c. These gradient Mach numbers have been identified as important parameters in

assessing the effects of compressibility in the numerical experiments of Sarkar (1994).

2) The pressure-dilatation is essentially a reversible nonequilibrium phenomenon acting as a mech-

anism by which the fluctuating kinetic energy is transferred and stored in the internal energy field.

The pressure-dilatation is shown to be interpretable as an added mass effect reducing the rate of

change of turbulence quantities by the capacitance of the mean internal energy field. As such it

may, in part, be responsible for some of the relaxational effects seen in compressible flows. This

remains to be seen.

3) The rapid portion of the pressure-dilatation is seen to be a function of the rate of change of

the relative times scales, Sk/es and Wk/e_. These quantities may be interpreted as indicating

how closely the eddy-turnover time tracks the mean velocity gradient. They occur because of the

evolution of the length scale of the turbulence and its importance to the rapid pressure integral.
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4) Unlikethesolenoidaldissipation,thetheorypredictsthat thecompressibledilatationisafunction
of the Reynoldsnumberand vanishes,for fixedturbulent Machnumber,as_theReynoldsnumber

increase.The compressibledilatation,in the low M_ limit, doesn't appear to be interpretable as a

spectral flux.

A brief overview of the more specific results of the theory can be found in the introductory section.

Limitations and extensions of the theory have been indicated in the previous section. A summary

of the representations is given in the appendix.

This article is a documentation of the physical implications of a pseudo-sound analysis for for the

covariances of the fluctuating dilatation. The uniqueness of the investigation is the small number

of phenomenological assumptions made. The results are a mathematical consequence of the initial

assumptions. As an analytical investigation the article is complete. The assessment and utility of

these results as models for engineering computations is the subject of several works planned or in

progress, Ristorcelli (1995), Ristorcelli et al. (i995). Preliminary computations in a few simple

benchmark flows have been successful.
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Appendix 1: Synopsis of the dilatational covariance representations

The analytical results,and associatedmathematicalformulaeare, asan aid to the user,briefly
summarized.It shouldbeemphasizedthat, at this point, the representationsdo not constitutea

fully developedor testedturbulencemodel.Testing,verifyingandevolvingthe presentanalytical

resultsinto a workingturbulencemodelsuitablefor engineeringcalculationsis thesubjectof work

nowin progress.

Thekineticenergyequationfor theturbulenceis

D

< p > -_ k = Pk - < p > es + < pd > - < p > ec + Tk (105)

where Pk represents the production and Tk represents the transport terms. The effects of compress-

ibility are given by the second two terms. The dissipation es = u < ,Jja_j > is the usual dissipation

associated with the vortical motions of the incompressible turbulence. The dilatational dissipation
4

or the compressible dissipation and denoted ec = 5v < dd >. There are additional terms repre-

senting the the contraction of the dyad of the mass flux on the mean flow acceleration. Tk will be

used to represent all such terms as well. Local isotropy has been assumed for the dissipation. The

usual modeled dissipation equation

D/Dt e = - (Cel < ttiuj > Ui,j nL- Ce2g) e/k -1- T_ (106)

is carried to describe its evolution. Note that no corrections for compressibility have been made in

this equation. The mean temperature equations , with the assumption of constant Cv, is

< p > c, D T = PT - < pd > + < p > es+ < p > ec + TT

Where TT is the transport of the mean temperature including such effects as the mean heat flux

and the turbulent or pressure transport. The production for a homogeneous flow with homogeneous

mean velocity gradients is PT = -PD + 2 < p > (U],2)2. Here P is the mean pressure and D

is the mean dilatation. Depending on the particular application the temperature equation may

have more or fewer production terms than indicated here. Note that if one carries the total energy

equation in a simulation, rather than the mean temperature, that that the pressure-dilatation only

needs to be carried in the k equation.

The representations for the effects of the compressible dissipation are given by the sum of the slow

r 8and rapid portions, e¢ = ec + ec.

16 M:
= + 6I I ].

W es [352 + ,51_z2][ I_ + ( )2113S2 + 1,SVV2] a 2 I;]. (107)
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Mt is the turbulent Mach number, Mt2 = 2k/c2, where c2g _ o_ = 7 <P> / < P > is the local sound

speed. Note that its definition follows that used in the acoustic literature where such a Mach number

is traditionally used to describe the sound generation problem by turbulence. It is the parameter

that arises naturally in nondimensionalization of the equations for a small parameter expansion.

The turbulent Reynolds number is given by Rt - _e _ 4P using the facts that _ = 2k/3 and es =
- - u 9ev

a_3/_ which is used to express the length scale as, _ = a(2k/3)3/2/es . For simple incompressible

shear flows, the constant, a, varies between 1 - 4 depending on flow, Sreenivasan (1995). Note that

in the definition the characteristic velocity _k is used; not < uaul > as is sometimes the case. The

nondimensional strain and rotation rates are given by: S: = (Sk/es) 2, I_': = (Wk/%) 2 where of

course, S = _ and IV = _. The strain and rotation tensors are defined in analogy

with the incompressible case. ie. traceless S_j = l[ui,j +Uj,i-_D(_ij], l'I_j = _[_i,jl, -_,i]. Note

that Sjj = 0 since D = Uj,¢. In a simple planar shear flow, Ui,j U1,2 (_ilti2j that S 2 W 2 a rr2• _--- = = _t' 1 ,2"

A quick of order of magnitude estimate for the integrals can be made using f = e -U_/4 The

1 __ 41r __ r 4
following values are found: I_ = -2, I_ --77- = 4.77.. I_ - _ = 0.785, I_ - _- - 1.273, I_ = 3.

The values found from high Reynolds number wind tunnel data are different: I_ = 0.300, I_ =

13.768, I_ = 2.623, I_ = 1.392, I_ = 3, Zhou (1995). The values given for the integrals reflect the

assumption of an equilibrium isotropic turbulence and are to he understood as suggestive of the

order of magnitude that they may have in more complex anisotropic and inhomogeneous situations.

The full pressure-dilatation covariance is a sum of two terms, <pd >=< pd >" + < pd >s

21 _ D
<pd >' = 3 1 V-t [< P :> M2t k]

<pd>_= 1 2)3i_ 2D- 3--6(5 1 o _-_ [< p > kM_[35 '2 + 514z2] ] (108)

Summing and using the evolution equations for T and k produces the following quasi-algebraic

representation for the full pressure-dilatation covariance,

< pd >= -kpd21l_ [Pk-- < P > e + Tk - IMP?(7 - 1)(PT+ < p > ¢ + TT)]

pd

_pd :

2I d
1 + 2IpdM_ + _I_dM47('_ - 1)

T

)_vd

Ipd

1 + 2[pdMt _ + _I_dM_'r'(7- 1)

2_is T
3 _ + I;d [3_2 + 5|i/'2]

1 _)3 2_30 ( a 11 . (109)
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Notethat e = es + ec and T = [35 '2 + 51)d_]. The term inside the inner brackets is the right hand

side of the mean temperature equation.
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